lejecom  Le journal de l’économie Malienne

Publicité


Lancement du Programme conjoint BCEAO/HEC Paris de renforcement des capacités du secteur bancaire de l'UMOA le 18 Juin AVIS A MANIFESTATION D’INTERET POUR LA SELECTION D'UN CABINET DE CONSULTANTS CHARGE DE LA CONCEPTION DE COURS, ET DE MODULES DE FORMATION EN EDUCATION FINANCIERE AINSI QUE DE L'ANIMATION DE SESSIONS DE FORMATION DES FORMATEURS DANS L'UEMOA AVIS A MANIFESTATION D'INTERET POUR LA SELECTION D’UN CABINET CHARGE DE LA DEFINITION ET DE LA MISE EN ŒUVRE DE LA STRATEGIE DE COMMUNICATION EN EDUCATION FINANCIERE DANS L'UNION ECONOMIQUE ET MONETAIRE OUEST AFRICAINE (UEMOA) Appel à candidatures pour la 43e promotion du cycle diplômant du Centre Ouest-Africain de Formation et d’Etudes Bancaires (COFEB) La hausse des inégalités affecte plus des deux tiers de la planète La Fédération des Sociétés d’Assurance de Droit National Africain (FANAF) tient sa 44ème Assemblée Générale Annuelle du 17 au 20 Février à Libreville au Gabon, sous le thème général : « La Donnée et l’Innovation au Cœur de l’Assurance Africaine » Dans le cadre de la mise en œuvre du Projet d’interopérabilité des services financiers numériques dans l’UEMOA, la Banque Centrale organise du 14 au 18 janvier 2019, au Siège de la BCEAO à Dakar, un atelier de lancement consacré au démarrage des trav UMOA : Le Comité de Politique Monétaire de la Banque Centrale des Etats de l’Afrique de l’Ouest (BCEAO)  tiendra, le mercredi 5 décembre 2018, sa quatrième réunion ordinaire au titre de l’année 2018 dans les locaux du Siège de la BCEAO à Dakar  Prix Abdoulaye FADIGA:Un prix d’encouragement a été remis à Mes. Aboudou Ouattara, Kouamé Désiré Kanga et Ruben Barnabas Djogbenou, co-auteurs de l'article «Hétérogénéité des économies de la CEDEAO : Quel défi pour une politique monétaire commune ? » Vigninou GAMMADIGBE, lauréat du Prix Abdoulaye FADIGA pour la Promotion de la recherche économique 2018 auteur de l’article : « Survie des banques de l'UEMOA : les nouvelles exigences de fonds propres sont-elles pertinentes ?  »

Ne laissons pas les algorithmes décider pour nous !

Vendredi 14 Décembre 2018


Un algorithme reflète le biais des données qu'il traite ; or ces données sont biaisées, car sélectionnées suivant des critères subjectifs liés à ce qu'une société ou un responsable juge important ou utile. De ce fait, les chiffres "officiels" eux-mêmes ne peuvent être considérés comme objectifs, ils sont un reflet de la société telle qu'elle est à moment donné. Les catégories et les classifications utilisées ne sont pas neutres ; de même que l'on a tendance à mesurer ce que l'on voit, on a tendance à ignorer ce que l'on ne mesure pas.


Les algorithmes prenant une place de plus en plus grande dans les décisions politiques, ils jettent une lumière crue sur les biais sociaux qui sous-tendent le choix des données qu'ils utilisent. A la limite, on pourrait dire que l'irruption de l'intelligence artificielle nous confronte au type de société que nous avons créé.

Non seulement les ordinateurs pensent comme des entreprises (ainsi que le dit Jonnie Penn, mon collègue de l'université de Cambridge), mais ils sont aussi conçus pour penser comme des économistes. Une intelligence artificielle est une version infaillible de l'homo economicus tel que l'on peut l'imaginer. Elle est parfaitement rationnelle et sa logique imparable lui permet de parvenir au résultat que l'on recherche, avec des ressources de calcul limitées. Elle est en cela bien plus efficace  qu'un être humain.

Selon la théorie utilitariste, nous prenons nos décisions (qu'il s'agisse d'un achat, d'un investissement, de notre investissement au travail…) dans l'objectif d'optimiser notre bien-être ou notre satisfaction en fonction de nos préférences et de nos croyances, dans le cadre des limites imposées par le revenu ou les ressources. Il paraît naturel de supposer que chacun choisit ce qui lui paraît préférable, pour autant l'utilitarisme est-il un concept pertinent ? 

Il est à l'économie ce que la théorie du phlogiston était à la chimie. Il y a fort longtemps, les chimistes croyaient que la matière combustible contenait un élément caché, le phlogiston [inflammable en grec], qui expliquerait le changement de forme d'une substance lors de sa combustion. Mais cette idée n'a jamais été confirmée. Les scientifiques n'ont pas pu mettre en évidence le phlogiston, de la même manière que les économistes d'aujourd'hui ne peuvent mesurer véritablement la satisfaction d'un individu ou d'un groupe.

L'utilitarisme classique préconise d'agir au niveau collectif pour la satisfaction maximale du plus grand nombre. De même que les économistes modernes suivent les traces de John Stuart Mill, la plupart des concepteurs des algorithmes sont des utilitaristes qui croient que si l'on sait définir la "satisfaction", il est possible de l'optimiser.
Cette hypothèse peu conduire à des résultats qui posent question. Considérons par exemple l'utilisation des algorithmes pour décider si un prisonnier peut être placé en liberté conditionnelle. Une étude approfondie  de 2017 montre que les algorithmes sont bien meilleurs que les êtres humains pour prévoir le risque de récidive, et que de ce fait ils peuvent être utilisés pour réduire de plus de 40% le taux d'incarcération "sans augmentation du taux de criminalité". Aux USA, l'intelligence artificielle pourrait servir à réduire une population pénale qui comporte un nombre disproportionné de Noirs. Mais que se passera-t-il si une intelligence artificielle gère les libérations conditionnelles et que la proportion de prisonniers noirs reste supérieure à celle des prisonniers blancs ?
Des algorithmes d'aide à la décision mettent ces questions au premier plan et nous contraignent à fixer précisément nos objectifs. Voulons-nous simplement réduire la population pénale dans son ensemble ou voulons-nous également un processus judiciaire plus équitable ? Là où la politique se satisfait d'imprécisions et de compromis pour masquer ce genre d'ambiguïté, l'intelligence artificielle exige de la clarté.

Du fait de cette exigence de clarté, il est plus difficile d'ignorer les causes structurelles des inégalités. A l'âge de l'intelligence artificielle, les algorithmes montrent que notre utilisation des données perpétue les conflits sociaux-politiques du passé.

Grâce à des organisations telles qu'AI Ethics Initiative  et Partnership on AI, un large débat sur l'éthique de l'intelligence artificielle commence à prendre forme. Mais ses algorithmes ne font que ce qu'on leur demande. La véritable question va bien au-delà de l'utilisation des algorithmes d'aide à la décision en politique ou dans les entreprises, elle interroge les fondements éthiques de nos sociétés.

Il faut sûrement débattre des questions pratiques et philosophiques liées au recours à l'intelligence artificielle pour optimiser notre "satisfaction", mais nous devons aussi nous engager sur la voie de l'introspection. L'intelligence artificielle soulève des questions fondamentales sur la manière dont nous avons organisé nos interactions sociales, politiques et économiques. Nous devons décider maintenant si nous voulons confier à des machines les données relatives à notre organisation sociale actuelle pour qu'elles prennent demain des décisions à notre place. Etant donné la fracture sociale qui se creuse un peu partout dans le monde, le moment est sans doute venu de passer à un autre scénario.
Traduit de l’anglais par Patrice Horovitz
Diane Coyle est professeur de politique publique à l'université de Cambridge.
© Project Syndicate 1995–2018
 


Nouveau commentaire :


Dans la même rubrique :
< >













Inscription à la newsletter